
Tightly Integrated Deep Learning and Symbolic
Programming on a Single Neuromorphic Chip

Bryan P. Dawson, Jamie K. Infantolino, Manuel M. Vindiola, and John V. Monaco
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005, USA
{bryan.p.dawson.ctr, jamie.k.infantolino.civ, manuel.m.vindiola.civ, john.v.monaco2.civ}@mail.mil

Abstract—This work integrates deep learning and symbolic
programming paradigms into a unified method for deploying
applications to a neuromorphic system. The approach removes the
need for coordination among disjoint co-processors by embedding
both types entirely on a neuromorphic processor. This integration
provides a flexible approach for using each technique where it
performs best. A single neuromorphic solution can seamlessly
deploy neural networks for classifying sensor-driven noisy data
obtained from the environment alongside programmed symbolic
logic to processes the input from the networks. We present a
concrete implementation of the proposed framework using the
TrueNorth neuromorphic processor to play blackjack using a
pre-programmed optimal strategy algorithm combined with a
neural network trained to classify card images as input. Future
extensions of this approach will develop a symbolic neuromorphic
compiler for automatically creating networks from a symbolic
programming language.

I. INTRODUCTION
Symbolic processing in neural networks remains a chal-

lenge. This gap reflects a disparity between connectionist and
symbolic models with regard to the central paradox in cogni-
tion, namely that humans are capable of both pattern recog-
nition and symbolic processing [?]. Although connectionist
models, such as deep neural networks, have seen great success
in pattern recognition tasks, methods to perform symbolic
processing tasks in the same architecture are currently limited.

There exists practical, in addition to theoretical, motivation
to perform symbolic processing and deep learning on a single
neural architecture. As special-purpose neural processing units
(NPU) have begun to emerge, the need for symbolic processing
on the same architecture has increased. So far, NPUs have been
co-located with von Neumann style (general-purpose) central
processing units (CPU) and memory, in which case symbolic
processing can be performed by the CPU. The ability of the
NPU to perform symbolic processing tasks would alleviate
reliance on and communication with the CPU, towards an all-
neuromorphic computer. Such a computer carries the benefits
of neuromorphic computing, including low power consumption
through event-driving computation and massive parallelism.

There are primarily two methods to configure a neural
network to perform a symbolic processing task. The first is
a bottom-up approach whereby general rules are extracted
from a set of training examples. This can be performed
using machine learning techniques, such as by training a fully
differentiable network with external memory [?]. The differ-
entiable neural computer (DNC) can solve complex structured
tasks that typically require some form of symbolic processing
and external memory, such as finding the shortest path in a
graph and solving block puzzles. The DNC is also capable of

learning algorithmic tasks, such as copying and sorting, using
input/output examples.

The second approach to symbolic processing is top-down,
in which a neural network is systematically configured ac-
cording to a set of general rules known a priori. Several pre-
vious works have taken this approach. The NEural Language
(NEL) provides a framework to deterministically configure a
neural network equivalent to a procedure given in a high-level
programming language [?]. Neuron activations encode scalar
and boolean values as well as lists and stacks, for which a
set of primitive functions are used to read and write to. In
JaNNeT, neural network compilation is performed using cel-
lular encoding as an intermediary representation, requiring four
different transfer functions and asynchronous global dynamics
[?]. As the only spiking architecture, STICK is a computation
framework that uses spike time intervals to encode values and
composition of networks to encode functions [?].

While a machine learning (bottom-up) approach could po-
tentially be used to learn a complicated algorithm from training
examples, such as natural language parsing and inference [?],
there are some scenarios in which a top-down approach might
be preferred. It is generally difficult to learn the special or
rare cases of a general rule from training examples alone, as
the frequent cases often overwhelm the infrequent ones. Rare
training examples may be treated as noise, in which case the
learning procedure fails to capture the complete set of rules. If
the general rule is tractable and known a priori, it may be more
practical to instead configure the network directly to encode
this information.

This work follows a top-down approach, in which a spiking
neural network (SNN) is configured to perform a symbolic
processing task, and this network is integrated with a pattern
recognition network on a single neuromorphic architecture.
Using blackjack as a motivating scenario, a neuromorphic
agent that combines deep learning and symbolic processing
is described. Blackjack was chosen for its simplicity and the
existence of an optimal strategy that remains tractable, as
opposed to other games such as chess or Go. The optimal
strategy can be described succinctly by a set of rules and
programmed in a symbolic language, however there do not
yet exist SNN constructs to achieve the same well-defined
behavior. We assume that the agent interacts through a visual
interface; thus it must recognize cards and make game play de-
cisions based on the card types. Using raw images as input, the
complete solution has two components: image classification
and game play strategy. Image classification is performed using
an existing deep learning neuromorphic solution. Configuration
of a SNN for the game strategy is the focus of this work.



  Hi St Sp Db Hi St Sp Db Hi St Sp Db

Pairs Policy

Bin Acc

Max11Max1

Table1

P

D

D P D P

P

D
D

P
Table11

D

P

A1 A11

Switch

D

Splitter

D P

Im
ag

e

2
3
4
5
6
7
8
9
10
A

Prioritize

Hi St Sp Db

Sum
11

Sum
1

Pairs

Sum Policy

Classifier

D

2

A

...

Fig. 1: Architecture overview.

The blackjack agent is implemented on the TrueNorth neu-
romorphic architecture and deployed to the IBM Neurosynap-
tic System (NS1e). The NS1e is a hardware implementation of
the TrueNorth, capable of simulating 1 million leaky integrate-
and-fire (LIF) neurons at 1 KHz while consuming less than
100 milliwatts [?]. TrueNorth implements a digital spiking
neuron model with over 20 independent parameters [?]. There
are primarily two modes of programming TrueNorth which
reflect the two approaches described above: a machine learn-
ing pipeline for object classification [?] and a compositional
network programming language, the Corelet Programming
Environment (CPE) [?]. A TrueNorth corelet is an abstract
building block in which network functionality is abstracted
away from input/output specification. In this way, networks
that perform complicated functions can be composed using
corelets that perform simpler functions.

II. NEUROMORPHIC BLACKJACK AGENT
Blackjack is a card game in which a player competes

against the dealer. The objective of the player is to obtain a
card total not over 21 that is larger than the dealer’s card total.
On each hand, the player is dealt two cards and chooses one
of four actions as long as the card total has not exceeded the
limit: hit (receive an additional card), stand (receive no more
cards), split (create two separate hands using two cards with
the same value), and double (receive only one additional card
and then stand).

Basic blackjack strategy, i.e., the policy that minimizes
losses to the dealer, depends on the player card total and the
dealer’s upcard, which is visible to the player at the beginning
of each hand [?]. The basic strategy can be broken up into
two separate lookup tables: the first is a function of card pairs
(doubles and A2-A10) and dealer’s upcard. The second is a
function of the sum of player card values and the dealer’s
upcard. The second table is only used if none of the entries in
the first table are matched.

The neuromorphic blackjack agent makes decisions us-
ing the card images, recognized by the pattern recognition
network, and optimal game policy, represented symbolically.
Gameplay proceeds as follows. At the beginning of the hand,
the agent sequentially examines all of it’s cards followed by the
dealer’s upcard. The agent’s cards are stored in a memory that
accumulates the hand total. After the dealer’s card is presented,
the agent makes a decision to take one of the four actions. The

  

2
3
4
5
6
7
8
9
10
A

Hi St Sp Db

...

2
3
4
5
6
7
8
9
10
A

Hi St Sp DbHi St Sp Db

22 A2 A10

Pl
ay

er
D

ea
le

r

...

Hi St SpDb

Hi St Sp Db

AA ......

......

Fig. 2: Pairs policy corelet.

first lookup table (pairs policy) is only used if the agent has
two cards matching one of the pairs in the table: two cards
with the same value or an Ace and non-Ace card. Otherwise,
the sum policy is used. The agent design reflects this, shown
in Figure 1.

Card image classification is performed by the Classi-
fier corelet which encapsulates a low-precision convolutional
neural network (CNN) with trinary ({−1, 0, 1}) weights and
topology that reflects TrueNorth architectural constraints, oc-
cupying 719,662 neurons (2812 TrueNorth cores) [?]. Images
are converted to a spiking representation using a layer of con-
volutional filters (the transduction layer) with high-precision
input and binary output. Neurons are stateless, performing a
single classification in a single timestep, 1 ms on the NS1e.

Optimal game policy is implemented by a hierarchical
network of 323 neurons. The network is constructed from the
bottom up, where each component encapsulates some well-
defined behavior in the game logic.

Since all images pass through a single classifier, and dealer



  

 input cards
 hand_total = 0
 action = “bust”

 // Loop until the dealer 
 // card is presented
 card = next(cards)
 while(type(card) != “dealer”)

 hand_total += value(card)
   card = next(cards)
 dealer_value = value(care)

 // Lookup action by hand 
 // total and dealer card
 if (hand_total==5 

   && dealer_value==2)
 action = “hit”

 …
 else if (hand_total==20 

&& dealer_value==Ace)
 action = “stand”

 output action

(a) Sum policy pseudocode.

  

1 2 4 8 A1 A1 A2 A8

2

3

4

5

6

7

8

9

10

A11

45

5

1

2

4

8

R8

R8

R8

A8

A2

5 22 5 22 5 22 5 22GR R GR R

... ... ... ...

... ... ... ...

5

21

...

5

22

...

5 22...

G

5

21

...

5

22

...

5 22...

G

value() function hand_total variable

(b) Sum policy corelets.

Fig. 3: Sum policy corelets and pseudocode.

cards are handled differently than player cards, branching must
occur within the symbolic processing network. On a parallel
architecture, such as TrueNorth, this is primarily achieved
through recurrent inhibitory connections. The Switch corelet
routes the recognized card values to either the player (P) or
dealer (D) pipelines. Due to a fan-out constraint on TrueNorth,
in which neurons can have up to 256 postsynaptic connections
all residing on a single core, a Splitter corelet sends classi-
fication decisions to each of the corelets implementing the
basic game strategies. The Pairs policy corelet performs a table
lookup using the player and dealer card values, producing no
output if no match is found. The Sum policy corelet maintains
a variable that represents the player’s hand total, which is used
in the second lookup table.

Lookup in the pairs policy table is performed by spikes
transmitted to axons that correspond to player and dealer card
values, shown in Figure 2. Neurons are grouped by the pair
type, e.g., A-A if two Aces are seen by the agent, and each
group contains one of four actions. Since only one pair can
be activated in a single step, an element-wise or operation is
applied to each action across the 10 groups to obtain 4 neuron
outputs which correspond to the 4 game actions.

Neurons in the pairs policy corelet are configured to spike
after having received 3 consecutive input spikes. Thus, the leak
is set to −1, synaptic weights set to 2, and threshold set to 3.
Synaptic connections, shown in Figure 2, ensure that only one
action neuron spikes when the dealer card is observed after the
pair cards. For example, consider the card sequence {2,2,10}
for player, player, and dealer cards, respectively. For the first
two player cards, spikes are transmitted to the ‘2’ player card
axon, raising membrane potential of the two connected neurons
to 2. Since the dealer card is 10, a spike is then sent to the
‘10’ dealer axon, causing only the ‘Sp’ neuron to spike. The
agent then decides to split.

The pairs policy corelet highlights a fundamental difference

between sequential and parallel computations. In a sequential
approach, if a condition is not met then the corresponding
instruction block is never executed. However on a parallel
architecture, such as a NPU, all instruction blocks are evaluated
simultaneously. Therefore, an explicit mechanism is needed
to suppress the effects of instruction blocks that are not
applicable. In the blackjack agent, this is implemented by a
recurrent inhibitory connection which disables output from the
pairs policy corelet after more than 2 player cards are observed,
after which the sum policy corelet takes precedence.

The sum policy corelet is composed of six corelets that per-
form different functions to implement the pseudocode shown
in Figure 3a. Card values are sequentially presented, and a total
of the hand card values is maintained. This total, along with
the dealer card value, is used to determine the optimal action.
The Bin and Acc corelets, shown in Figure 3b, work together
to maintain a sum of card values in the current hand. Since
Aces can be treated as either 1 or 11, this total is maintained
for each scenario, reflected by the parallel processing pipelines
following the Acc corelet.

The Bin corelet performs a decimal to binary conversion,
representing each card value as a sum of powers of two,
corresponding to the axon types of Acc. Each card value
activates a number of neurons in the Acc corelet equal to the
card value. This is performed for both the Ace 1 and Ace 11
scenarios. Following the Acc corelet, the Max1 and Max11
corelets compute the maximum active neuron by inhibiting
neurons less than the max. The maximum neuron is passed
to the Table1 and Table11 corelets, which lookup the optimal
decision using the card values and the dealer’s upcard, similar
to the Pairs policy corelet.

Output from both policies is sent to the Priority corelet
that determines the decision priority. The pairs policy takes
precedence, and if it outputs a spike, this inhibits any decision
from the sum policy tables. Otherwise the sum policy output is



used. The Table11 decision takes priority unless the hand total
is over 21, in which case the decision from Table1 is used,
whereby an Ace would be treated as value 1 instead of 11. If
the hand total remains over 21 when treating the Ace as a 1,
then the round is lost and no decision is output.

III. RESULTS
Image recognition and game policy performances are eval-

uated separately since these are separate components in the
blackjack agent. Performance of each component is given by
classification accuracy (ACC).

The CNN must learn to recognize the card value (10 classes
total) and not the card itself. Training is performed using
10k card images scaled to 32x32 and augmented with affine
transformations, as shown in Figure 4. Target labels are given
by the card value (2-10 and Ace, where all face cards are 10).
The CNN is trained for 10k epochs with 0.2 learning rate. The
resulting network achieves 99% ACC on the training dataset
and 97% ACC on a separate test dataset with 10k card images.

Game policy ACC is given by the ability of the policy
network to output the optimal action given card value as input,
where optimal actions are defined by the basic blackjack strat-
egy tables. Since the symbolic processing approach encodes
exactly the optimal strategy, it achieves perfect accuracy. For
comparison, we also evaluate a machine learning approach.

A 3-layer fully-connected high-precision neural network
is trained using simulated blackjack hands. For the training
dataset, 100k blackjack hands with the optimal actions are
generated. Out of the 100k generated hands, there are 10,201
unique training instances, i.e., unique player and dealer card
value combinations. In this dataset, the 4 target classes are
extremely unbalanced, having the following ratios of each
action: 0.809 (stand), 0.167 (hit), 0.021 (split), and 0.003
(double). To compensate for the unbalanced classes, each
sample is weighted in training by 1− rc, where rc is the ratio
of class c.

The player and dealer hands are encoded as a length-20
vector, where each element corresponds to the normalized card
count of each card value. The fully connected network has
an input layer of size 20 (corresponding to the card count of
player and dealer cards), hidden layer of size 200, and output
layer of size 4 (corresponding to the 4 actions). The network
is trained for 10k epochs using Adam optimization with 0.01
learning rate and cross-entropy loss function.

The resulting network achieves 99.59% accuracy on the
training dataset. Perfect accuracy is difficult to achieve using
a machine learning approach due to the unbalanced classes
and presence of rare samples. This is verified by examining
the action ratios in the 42 missed training samples: 0 (stand),
0.071 (hit), 0.476 (split), and 0.452 (double).

To test the generalization ability of the policy network,
an additional 10k simulated hands are generated. Of these 10k
hands, there are 255 unique player/dealer card values which are
not seen in the training dataset. This set of 255 hands contains
227 stand and 27 hit actions. Ability to generalize to unseen
card value combinations is evaluated by performance on the
255 novel hands. The network has a classification accuracy of
99.61% (254 out of 255 correctly classified).

IV. CONCLUSION AND FUTURE WORK
This work introduced a symbolic processing approach

to basic blackjack strategy, implementing a blackjack agent
in spiking neurons. The all-neuromorphic solution integrates

Fig. 4: Example card images.

symbolic processing for decision making with a spiking CNN
for image recognition. In cases where optimal decisions are
captured by a small finite set of rules, symbolic processing
is preferable to a machine learning approach, whereby rare
samples and unbalanced class distributions are difficult to
capture. Encoding the rules directly ensures the decision-
making component of the agent has known behavior over all
possible inputs, leaving errors only to the image recognition.

Several constructs were introduced in order to implement
some symbolic processing paradigms in spiking neurons.
These include: resetting to an initial state when no inputs
are received as a form of loop iteration; recurrent inhibitory
connections as a form of control flow and branching; and a
stateful population code as a form of discrete memory for
integer variables.

The solution has been handcrafted utilizing a unique com-
bination of spiking networks. Future work will generalize
the above constructs with an ultimate goal of building a
neuromorphic compiler. Such a tool would allow seamless
integration of deep learning with the symbolic processing
tasks required for neuromorphic device operation, such as
input/output management, memory allocation, and other rule-
based tasks in which well-defined behavior is warranted.

REFERENCES
[1] P. Smolensky, G. Legendre, and Y. Miyata, “Principles for an integrated

connectionist/symbolic theory of higher cognition,” 1992.
[2] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-

Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[3] H. T. Siegelmann, “Neural programming language,” in AAAI, 1994, pp.
877–882.

[4] F. Gruau, J.-Y. Ratajszczak, and G. Wiber, “A neural compiler,” Theo-
retical Computer Science, vol. 141, no. 1, pp. 1–52, 1995.

[5] X. Lagorce and R. Benosman, “Stick: Spike time interval computational
kernel, a framework for general purpose computation using neurons,
precise timing, delays, and synchrony,” Neural computation, 2015.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[7] A. S. Cassidy et al., “Cognitive computing building block: A versatile
and efficient digital neuron model for neurosynaptic cores,” in Neural
Networks (IJCNN), The 2013 International Joint Conference on. IEEE,
2013, pp. 1–10.

[8] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” arXiv preprint arXiv:1603.08270, 2016.

[9] ——, “Cognitive computing systems: Algorithms and applications for
networks of neurosynaptic cores,” in Neural Networks (IJCNN), The
2013 International Joint Conference on. IEEE, 2013, pp. 1–10.

[10] R. R. Baldwin, W. E. Cantey, H. Maisel, and J. P. McDermott, “The
optimum strategy in blackjack,” Journal of the American Statistical
Association, vol. 51, no. 275, pp. 429–439, 1956.


